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Abstract—Chip design tools play an important role in the
semiconductor industry, affecting production costs, accessibility,
and innovation. Traditional commercial chip design tools have
high licensing fees which cause innovation barriers and slow
down the progress of smaller entities. However, in the last few
years, advancements have been made in open-source chip design
tools, supported by initiatives such as RISC-V and DARPA
funding. These chip design tools target important issues like se-
cure and specialized hardware design and encourage cooperation
among worldwide innovators to provide alternatives to traditional
expensive tools. However, a cloud-based cluster that supports
end-to-end chip design using open-source hardware and software
solutions is necessary to realize its full potential. In this work,
we propose a Free Open-Source Software Stack-based Cluster
(FOSSSC) to support open-hardware-based chip design. The
proposed system provides end-to-end chip design and software
development solutions and gives accessibility to open-source tools
using cloud platforms and high-performance computing. The
FOSSSC provides a globally accessible open-source digital system
design software stack including design, verification, simulation,
and programming.

I. INTRODUCTION

The foundation of the entire semiconductor industry [1] is
standing on the Open-source chip design tools. These tools
have a huge impact on the cost of semiconductor manufactur-
ing, its accessibility, and its innovation potential. This demands
the need for improved user-friendly technologies that are more
efficient, effective, and easily accessible for chip designers and
software developers.

In the past few years, standard chip design tools [2] have
faced issues such as high cost, making them inaccessible to
digital designers and small business owners. Due to their non-
open-source nature and limited accessibility, these tools hinder
innovation in the semiconductor industry, stifling smaller play-
ers and slowing the pace of progress. These issues direct the
chip design tool to shift towards the open-source. Open-source
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tools are now more competitive, particularly with the success
of projects such as RISC-V and sponsored through DARPA
funding [3]. Open-software solutions such as GCC compiler
and Linux have democratized design resources and innovation.
This approach has opened the door for open-hardware tools
to open new avenues for more international cooperation in
the semiconductor industry. Open-hardware tools like Chisel
[4] and OpenRAM [5] take on different methodologies that
open up innovative ways for chip designers. It addresses the
challenging issues like memory design [6] that are also part
of the chip design domain.

The open-source tools need a High-Performance Computing
(HPC) cluster [7] that can do multiple tasks in parallel for
multiple users and can utilize resources more efficiently. In this
work, we have proposed an HPC cluster for an open-source
digital system design software stack called Free Open Source
Software Stack Cluster (FOSSSC). The FOSSSC provides
a free and globally accessible system that is an an open-
source digital system design software stack including design,
verification, simulation, and programming. Through this, the
semiconductor industry can be forwarded to a new innovative
era.

II. RELATED WORK

In the globally wide semiconductor industry, open-source
tools have provided improvements and evolution by offering
cheaper solutions for chip design development software. Sev-
eral tools are now available, especially for system develop-
ment, simulation and verification:

Icarus Verilog (iverilog) [8] is a free and open-source
Verilog synthesis and simulation tool. For digital designers
using open-source solutions, iverilog is a very important tool.
Since for assembling and simulating Verilog HDL designs [9],
this tool is widely used.

Verilator [10] is an effective open-source tool for simulating
Verilog HDL. Verilator, in contrast to conventional simulators,
translates Verilog code into C++ or SystemC [11], allowing for
high-performance digital design simulation and verification.



GTKWave, [12] provides simulation support with Icarus
Verilog and Verilator, with feature waveform viewer for VCD
(Value Change Dump) and LXT (LXT2/LX2) files [12] for
debugging and visualizing the simulated results.

Cocotb [13] is a Python-based digital logic verification
framework, a coroutine-based cosimulation [14] library for
writing testbenches in Python. With Cocotb, users may create
testbenches in Python, providing an efficient and adaptable
method of verification.

QFLOW [15] is an open-source framework for digital
synthesis and layout, offering a comprehensive RTL-to-GDSII
flow for chip design. It simplifies the processes of synthesis,
placement, routing, and optimization which makes the creation
of custom integrated circuits easy.

OpenLane/OpenROAD [16] [17] are open-source projects
providing complete chip design solutions and cover synthesis,
placement, routing, and optimization. These projects use open-
source tools and methodologies to facilitate the design and
production of integrated circuits.

EDA Playground [18] is an online platform that allows users
to simulate and test hardware description languages (HDLs)
like Verilog [19] and VHDL [20] directly. Quite Universal Cir-
cuit Simulator [Qucs-S] [21] is an open-source Qucs, briefly
for Quite Universal Circuit Simulator, is a circuit simulator
with a graphical user interface (GUI). The software supports
all kinds of circuit simulation types like DC, AC, S-parameter
[22], Harmonic Balance analysis [23], noise analysis, etc.

Tiny Tapeout [24] makes manufacturing ASICs (chips)
affordable and accessible to students and makers. They offer
an open-source ASIC toolchain and made a community of
open silicon researchers who collaborate and offer different
digital design projects.

Additionally, SkyWater Technology Foundry [25] provides
an open-source Process Design Kit (PDK) that provides re-
sources including standard cell libraries, IO libraries [26],
SRAMs [27], and other essential components for designing
integrated circuits. This PDK resource enables chip design-
ers to develop custom chips using open-source tools and
methodologies. LibreSilicon [24] focuses on developing a
complete open-source PDK [25] and toolchain for IC design
and manufacturing. Their aim is to provide tools for chip
design, simulation, and fabrication.

eFabless [28] is an open-source tool that provides resources
to chip design flow with access to open-source PDKs and
design tools. These resources enable to creation of custom
chips and prototypes [29] using open-source technology and
methodologies.

Google and SkyWater Technology Foundry [25] collaborate
on OpenROAD, an open-source digital RTL-to-GDSII flow
[30]. This project serves as a complete chip design flow,
including synthesis, placement, routing, and optimization, uti-
lizing open-source tools and methodologies.

Raptor [31] simplifies and shares control of FPGA (Field-
Programmable Gate Arrays) design and implementation, giv-
ing a user-friendly environment for FPGA development. It
supports multiple FPGA architectures [32], integrates with

Fig. 1. Free Open-Source Software Stack Cluster (FOSSSC) for Chip Design:
Visual Representation of Development Tools and Approaches for End-to-End
Chip Design

popular open-source tools, and provides a flexible design
flow. Raptor aims to empower the users to efficiently develop
and deploy FPGA-based solutions across various applica-
tions, emphasizing accessibility and collaboration, providing
documentation, tutorials, and community support to facilitate
learning and knowledge sharing within the FPGA community.

III. FOSSSC: FREE OPEN-SOURCE SOFTWARE-STACK
CLUSTER FOR DIGITAL SYSTEM DESIGN

The FOSSSC uses 10 Nodes CPU-GPU-based HPC cluster
(shown in Figure 2) that handles the intensive computational
simulation and compilation tasks. Each node has 128 gigabytes
of RAM, 4070TI Nvidia TPUs, Intel 80 cores, and 2 terabytes
of SSD storage. The nodes are networked with a robust 10
Gigabit Ethernet backbone, ensuring high-speed data transfer
and low-latency communication across nodes. Operating on
the Linux Ubuntu-Server Operating System (OS) the cluster
provides performance and flexibility, with efficient user man-



Fig. 2. Photograph of High-Performance Computing Free Open Source
Software Stack Cluster

agement of diverse workloads and scientific computations. The
section is further subdivided into the following subsections:
a) Application Domain, b) Open-Hardware Stack, c) Digital
Design Tools d) Digital Platform Synthesis e) System Verifi-
cation, and f) Software Development Stack.

A. Application Domain

The application domain provides a web and secure shell
interface to wide range of applications for digital system de-
sign shown in Figure 1. To manage application source code in
FOSSSC, we used Git server systems. It prioritizes application
development and management performance and accommo-
dates large numbers of users and repositories efficiently the
application development and management performance and
accommodates large numbers of users and repositories. Git’s
decentralized architecture enables digital system projects with
variable sizes to collaborate effectively on codebases of any
scale. Its branching and merging capabilities facilitate parallel
development workflows, allowing teams to work concurrently
on different features or fixes without contention. The Ap-
plication Version System integrates markdown and draw.io
for text-based documentation, diagramming, and flowcharts
respectively.

B. Open-Hardware Stack

The hardware stack facilitates digital system development,
including bus systems, memory controllers [33], [34], mem-
ory manager [35]–[37], scheduler [38], [39], and heteroge-
neous processing cores [40]–[42]. Open hardware standards
like RISC-V [43], Vector accelerator [44], [45] and AXI-
bus system [46] are pivotal. RISC-V offers customizable
processor designs, while AXI ensures efficient interconnects
within System-on-Chip (SoC) architectures [47]. Memory
accelerators and network components also improve system
connectivity and performance. Resources for the development
of applications are also provided by this stack.

Fig. 3. Secure Shell Interface Connection for FOSSSC access

C. Digital Design Tools

The FOSSSC provides multi-level digital design support to
ensure that hardware designers have the required tools and
support at each stage. The FOSSSC provides switch-level
design, gate-level design, register-transfer level (RTL) design,
and system-level design support.

1) Switch-Level Design: Switch-level design approach of-
fers comprehensive digital circuit development while targeting
on transistor-level modeling. FOSSSC offers switch-level de-
sign by utilizing the Verilog design approach and Layout De-
sign Approach. It allows digital designers to model circuits at
low levels for detailed electrical characteristics, behavior, and
analysis of the transistor using SPICE (Simulation Program
with Integrated Circuit Emphasis) tool. This approach utilizes
tools like Verilog for HDL-based design and simulation, Magic
for layout creation and editing, and KLayout for layout visu-
alization and design rule checking. SPICE is used for circuit
simulation. For memory components, OpenRAM automates
the generation of SRAM layouts and integrates with other tools
like Magic and SPICE for a smooth design process. Alliance
CAD System provides a suite of tools, including schematic
capture, layout, and verification, supporting the complete flow
of transistor-level design. This open-source ecosystem enables
detailed switch-level design, ensuring high reliability between
the digital model and the physical circuit.

2) Gate-Level Design: FOSSSC provides a comprehensive
framework for Gate-level design using Verilog as the main
hardware description language (HDL), enabling designers to
define and simulate digital circuits at the logic gate level.
Additionally, FOSSSC supports VHDL, offering a strong
alternative that is particularly valued for its rigor and detailed
design syntax.

3) Register-Transfer Level (RTL) Design: FOSSSC sup-
ports RTL design by offering a versatile range of hardware
description languages including Verilog, VHDL, and Sys-



temVerilog. It allows designers to describe the flow of data
between registers and the logical operations that occur on that
data, capturing the behavior of digital circuits in a way that
closely resembles the final hardware’s operation.

4) System-Level Design: In system-level design, FOSSSC
targets support through SystemVerilog and high-level synthesis
(HLS) tools. This enables designers to model and develop
complex systems with higher abstraction, facilitating quicker
design iterations and validations. FOSSSC offers a behavioral-
level design approach using SystemC to model and simulate
complex digital systems, where designers can define the
behavior, data flow, and control logic of the entire system
without needing low-level hardware specifics. Tools like TLM
(Transaction-Level Modeling) within SystemC facilitate high-
level simulation and verification, making it easier to explore
different architectural configurations. Additionally, High-Level
Synthesis, an open-source library (HLSLib), allows to convert
C++ or SystemC descriptions into hardware descriptions in
Verilog or VHDL [48], [49]. This method ensures that system-
level behavior is captured and optimized early in the design
process, making the development process more efficient and
flexible.

D. Digital Platform Synthesis

This section below discusses software stacks that are used
to develop digital system-based chip design.

Simulation: The VLSI Chip Design process begins with
simulation tools helping in validation and testing the digital
design’s concept and functional specifications. The tools like
Verilator, Icarus, and GTKWave are used to ensure that the
code written in Hardware Description Language (HDL) is
accurate and functional. These tools ensure that our designs
work correctly before moving on to the next stages of chip
development.

System Integration: These tools and frameworks provide
efficient development, testing, and integration of complex
semiconductor components. We integrate FuseSoC for IP core
management and integration for complex FPGA/ASIC digital
design. LiteX serves as a comprehensive SoC builder frame-
work, capable of generating complete SoC designs tailored
to diverse FPGA platforms. For research and innovation,
the OpenPiton platform is integrated. It provides support for
exploring and experimenting with many-core processor archi-
tectures, contributing to the advancement of SoC development
methodologies.

OpenPDK: Open Process Design Kits (OpenPDKs) include
standard cell libraries, technology files and design rules are
essential for physical design and tape-out. OpenPDKs ensure
compatibility with foundry processes and facilitate the gener-
ation of design files ready for tape-out.

E. System Verification

The System Verification section provides tools for func-
tional and formal verifications.

1) Functional Verification: For the initial simulation phase,
we employ tools like Cocotb and SVUnit for further ver-
ification of our chip designs. These tools help us set up
test benches, which are essentially environments where we
can test how our chip behaves under different conditions.
Cocotb allows us to write test cases in Python and simulate
how the chip responds, while SVUnit helps us verify specific
functionalities of our design in SystemVerilog. In simpler
terms, these tools help ensure that our chip performs as
expected and meets all the requirements before it goes into
production.

2) Formal Verification: The formal verification tools pro-
vide an extra layer of assurance that hardware design behaves
correctly and consistently across various stages of the chip
development process. This process helps validate the hardware
design down to a low level of detail. We utilize tools such as
SymbiYosys and Formality for this purpose. SymbiYosys is an
open-source tool that helps in formal verification by analyzing
the design for correctness specifications. The formality tool
also provides equivalence checking and property verification.
It ensures the functionality of the design by doing the pre-and
post-synthesis.

Physical Design and Timing Analysis: After functional
and formal verification, the next stage is timing analysis,
Physical Design Place, and Routing. Timing analysis ensures
the timing behavior of the chip to ensure that signals propagate
correctly and meet the required timing constraints. OpenSTA
and OpenTimer are used to identify and address timing con-
straints that specify the maximum delay allowed for signals to
propagate through various paths in the design.
Physical Design, often referred to as PnR, in which the logical
representation of the chip is mapped into the physical layout
of the IC. This includes processes like placing the various
components of the design on the chip’s surface and routing
connections between them. Basically, the goal is to optimize
factors such as area, power consumption, and signal integrity.
In our work, the OpenRoad, QFlow, Yosys, and Magic are
integrated.

Tapeout: Once the physical design is complete and timing
constraints are met, the design is ready for the tape-out. When
the design files like layout data and timing information are
finalized, then its ready for submission to the foundry. If any
errors or deficiencies occur during the earlier stages then it
must be addressed before tape-out to minimize the risk of
costly manufacturing process.

F. Software Development Stack

The Software Development Stack provides application de-
velopment support for the digital system. The section further
discussed the software stack that is used to develop applica-
tions for open-hardware.

1) IDEs (Integrated Development Environments): The
FOSSSC IDE provides a software suite which is designed
to streamline and optimize the software development process.
The cluster uses three IDEs: a) Eclipse IDE with RISC-
V plugin, b) Platform-IO IDE, and c) Visual Studio Code



with RISC-V extensions These IDEs encompass a range of
tools and features such as source code editing, compiling,
debugging, testing, file linking, and project management, all
within a user-friendly Graphic User Interface (GUI). This in-
tegrated approach aims to enhance efficiency and productivity
in embedded application development.

2) Compilers: It plays a crucial role in software develop-
ment by translating programs written in a source language into
equivalent programs in a target language, such as assembly
language or absolute machine code. The translation process
involves several phases including lexical analysis, syntax anal-
ysis, semantic analysis, intermediate code generation, code
optimization, and code generation. Specific optimizations for
embedded systems are also incorporated to generate executable
files tailored for specific platforms. The HPC cluster provides
a wide range of open-source compilers for RISCV-V pro-
cessor architecture such as GCC (GNU Compiler Collection)
for RISC-V: Supports C, C++, and other languages. It also
provides support for LLVM-based RISC-V compilers: Clang,
and LLVM-RISC-V.

3) System Libraries: The cluster includes pre-written code
libraries (such as Newlib, Libgcc etc) that provide specific
functionalities, enhancing efficiency, modularity, coherence,
and re-usability of functions. In the realm of embedded
systems, libraries are tailored to meet the requirements of
microcontrollers and IDEs. These libraries provide functions
for hardware peripheral interfacing, communication protocols,
sensor interfacing, mathematical calculations, signal process-
ing, and power management.

4) Debuggers: Debugging tools such as GDB (GNU De-
bugger) with RISC-V support and OpenOCD (Open On-Chip
Debugger) are used for the debugging of RISC-V programs
and to identify and rectify errors in software code during the
development process

5) Real Time Operating System Support: Different Real-
time Operating Systems (RTOS) such as Zephr, and FreeRTOS
support is provided. These RTOS are designed specifically
for applications with real-time operational requirements. They
ensure correctness in logical computations within defined time
constraints, with determinism and response time predictability
being key characteristics. RTOS features include task schedul-
ing, resource management, inter-task communication, interrupt
handling, and fault tolerance.

6) Simulations: The FOSSSC deploys different simulators
for systems-level applications testing which provide func-
tional, instruction and cycle-level accuracy. Spike, QEMU,
and GEM5 simulators are used for functional verification at
the event, cycle-level and provide a modular framework that
supports the RISC-V architecture. Spike simulator is used as
it provides robust RISC-V ISA Simulation to emulate a RISC-
V system standalone or running RTOS, offering developers a
comprehensive environment for testing and validation. It offers
flexibility and extensibility for simulating intricate computer
systems. With these simulators, the software stack provides a
rich toolkit to work, explore, experiment, and innovate in the
realm of embedded systems development.

IV. RESULTS AND DISCUSSION

In this section, we discuss our results while using FOSSSC
for various processor-based digital system design labs and
projects. The cluster is accessible to 100 users via Secure
Shell shown in Figure 3.
StaticIPAddress : 10.0.0.153
PublicIPAddress : 119.156.30.83

We have used FOSSSC for different labs, hands-on work-
shops, and have given access to chip developers to design and
develop digital systems. We have conducted the following labs:

1) VLSI Design Lab:
• Utilized OpenLane and QFlow GUI interface for

GDS-II development, targeting OpenPDK libraries.
• OpenPDK process design kits for chip fabrication

processes, aiding in VLSI design.
2) FPGA-based System Lab:

• Employed OpenFPGA boards for FPGA develop-
ment and testing.

3) Digital System Design Lab:
• Used tools like Icarus Verilog (iverilog), Verilator,

GTKWave, and Cocotb for digital system designs.
• These tools facilitate simulation, verification, and

debugging of digital circuits and systems.
4) Embedded System Design Lab:

• The lab focuses on industrial-grade 32-bit general-
purpose RISC-V MCU-CH32V003 embedded sys-
tems for real-time and IoT applications.

• It involves the implementation of the core func-
tionalities of CH32V003 microcontroller like GPIO
(General Purpose Input/Output) pins control, analog
to digital conversion using 10-bit built-in ADC
(Analog to Digital Converter), standard communica-
tion interfaces like USART (Universal Synchronous
Asynchronous Receiver Transmitter), I2C (Inter-
Integrated Circuit) communication and SPI (Serial
Peripheral Interface) communication with sensors
(e.g. MCP9808 high-accuracy I2C temperature sen-
sor) and other devices.

V. CONCLUSION

In this work, we propose FOSSSC, a Free, Open-Source
Software Stack-based HPC Cluster for Processor Digital Sys-
tem Design. The FOSSSC cluster provides chip design, sim-
ulation, verification, and embedded applications development
support by giving open-source software access using a cloud
cluster. The cluster is used for different projects such as VLSI
design, Embedded applications, Computer Architecture, and
digital system design.
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